Efficiency and Design Improvements in Multiple Hearth & Fluid Bed Incinerators

Chavond-Barry Engineering
400 Rt. 518, Blawenburg, NJ 08504

Outline

- Fluid Bed Incinerators (FBI's)
 - Reversible Bed Resizing
 - Air Preheating
- Multiple Hearth Incinerators (MHF's)
 - Reheat and Oxidize (RHOX) Process
 - Flue Gas Recirculation (FGR)
 - Center Shaft Air
- General
 - Improved Dewatering
 - Grease

Pipe-Tuyere Design Considerations

- Fluidizing air
 - Blower efficiency at lower air flow
 - Heat exchanger bypass
- Pipe durability
 - No shutdowns from lost tuyeres
 - Can clean-out sand from pipes while operating
 - Can still operate with broken pipe tuyere
- Over-bed burner
 - Improved freeboard temperature control
 - Live flame can reduce CO
 - Better freeboard mixing

Preheating the Combustion Air

- Fluidizing air
 - Older FBI designs incorporate no or very low temperature, air preheating
 - Preheating combustion air reduces fuel required during operation
 - Higher preheat temperatures = less auxiliary fuel
 - Often accomplished with a flue gas heat exchanger

Preheating the Combustion Air

- Example:
 - 5,000 SCFM, Preheated +1000°F
- .25BTU/lbm°F*.075lbm/ft³*5000SCFM*1000°F
 - 93,750 BTU/min, or < 40 gal/hr fuel oil
 - 40 gal/hr*3\$/gal*24hrs/day = \$2880/day

- Refractory lined cylindrical steel shell
- Separated into a series of combustion chambers - refractory hearths one above the other
- Temperature and reaction environment well controlled on each hearth

- Dewatered sludge cake enters the furnace at the top
- Inject air and fuel where needed to maintain temperature and supplement the combustion process
- Ash product exits the bottom
- Furnace exhaust gases exit at the top and head to downstream air processing

- Dewatered sludge Cake enters the furnace at the top
- Inject air and fuel where needed to maintain temperature and supplement the combustion process
- Ash product exits the bottom
- Furnace exhaust gases exit at the top and head to downstream air processing
- •Generalized to three processing "zones"

• Counter current flow of rising exhaust gases and good mixing of descending sludge ensure complete combustion

Poor distribution of sludge across top hearth:

- Under utilization of furnace area, less efficient operation
- Uneven hearth temperatures
- Burning in lower hearths

Adding rabble improves sludge distribution

RHOX – Reheat & Oxidize Process

- In NJ, all MHF are required to maintain an afterburner at >1500°F
- Typical afterburner designs include:
 - Top Hearth
 - Top heath with Jumper Flue
 - External Chamber
- Afterburners located directly after the incinerator (before APC equipment)

RHOX – Reheat & Oxidize Process

- Traditional afterburner designs require 1 or more burners
- Require high fuel usage to maintain afterburner temperature
- Additional burners can produce NOx

RHOX – Reheat & Oxidize Process

- RHOX Process differs in that:
 - Occurs after the APC equipment
 - Recovers heat from exiting exhaust gasses
 - Requires 1 burner (less potential Nox production)
- Common RHOX process application is the Regenerative Thermal Oxidizer (RTO)

Regenerative thermal Oxidizer

Regenerative Thermal Oxidizer Airflow Diagram

Regenerative Thermal Oxidizer

• RTO:

- Utilizes 2 or more heat recovery chambers
- Cold inlet gas passes through a heated chamber,
 preheating the gas
- Hot exhaust exits through and heats another chamber
- A single burner maintains gas temperature within the RTO
- Periodically, a valve switches the inlet/outlet chambers

Regenerative Thermal Oxidizer

- RTO benefits:
 - More efficient that traditional afterburners
 - The use of waste heat recovery decreases the fuel requirements
 - Provides more control than traditional afterburners
 - Less affected by furnace upsets / changes

Flue Gas Recirculation (FGR)

- •Another efficiency improvement for MHF's is Flue Gas Recirculation
- •FGR moves exhaust gas from the feed (top) hearth to a hearth below the volatile burning zone

Flue Gas Recirculation (FGR)

• FGR

- Injection of cooler mostly inert gas:
 - Reduces fuel usage
 - Increases operational stability
 - Reduces slag formation
 - Lowers hearth peak temps
 - Reduces oxygen content
 - Increases operational stability
 - Reduces flare-up during feed stoppage

lowering NOx production

- Promotes complete ash burnout
- Better solids gas phase mixing

Flue Gas Recirculation (FGR)

• Hearth without FGR (Left) and with (Right)

Center Shaft Air

- Another way to reduce fuel usage in MHF's is by utilizing heated Center Shaft Air
- The Center shafts and rabble arms are air cooled
- Heated center shaft air can be:
 - Injected into the stack for steam plume suppression & increased dispersion
 - Utilized as burner air supply or furnace combustion air to decrease fuel usage

Improved Dewatering

- Typical Sludge Cake
 - Belt filter press: <21-25% solids
 - Centrifuge: 27-30% solids
 - ~75% water
- Why does this matter?
 - Heating Value of Water = 0
 - Water requires a large heat *input* to vaporize $\Delta H_{vap} = -1059$ BTU/lb
- More water = More auxiliary fuel

Improved Dewatering

- At low moisture content, sludge can burn without the addition of fuel oil (Autogenous).
- Typically at >26% for a Fluid Bed
- Super-Autogenous conditions limit operations

Fat, Oil & Grease

- Fat, Oil, and Grease are waste-products from the restaurant industry
- Consists of some food debris, mostly cooking oils & fats, and ~96% water
- Often concentrated to <50% water before added to an incinerator
- Grease can be used to supplement auxiliary fuel (sometimes up to 100% during operation)

Fat, Oil & Grease

- No petroleum products or other hazardous materials found in grease
- Non-processed fuel (concentrating aside)
- Restaurants typically pay a tipping fee for removal and disposal
- With current fuel prices, R.O.I. for a grease receiving/handling facility can be less than
 3 years with tipping fees or 6 years without

Questions?

Chavond-Barry Engineering Corp.
400 County Route 518
Blawenburg, NJ 08504

Tel: (609) 466-4900

Fax: (609) 466-1231

